Laser-induced breakdown spectroscopy; X-ray fluorescence; Reflectance spectroscopy; Data fusion; Mineral interpretation; Partial least squares;INDUCED BREAKDOWN SPECTROSCOPY; QUANTITATIVE MINERALOGY; RAMAN-SPECTROSCOPY; WESTERN-AUSTRALIA; WAVELENGTH; DEPOSIT
This article is extension of the earlier work (Khajehzadeh et al., 2016), where quantitative mineralogical information of slurry samples was achieved using an on-stream LIES analyzer. Despite the great advances in the analytical methods and laser-based measurement techniques, the industrial developers are still demanding novel ideas enabling differentiation between minerals having similar elemental contents such as hematite and magnetite or silicon-bearing minerals such as quartz and other mixed silica minerals since they have different flotation properties. The available analytical techniques for LIES spectral analysis (including the earlier work of this research) could not distinguish between such minerals with identical elemental contents. This work at first presents data fusion of LIES and reflectance spectroscopy and then discusses the data fusion of reflectance spectroscopy and X-ray fluorescence (XRF) measurement techniques operating on the same slurry samples. The results will show that such data integrations enable on-stream and quantitative identification of slurry mineral contents specially for hematite, magnetite, quartz and ferrorichterite which are important minerals in iron ore beneficiation.