INDUCED BREAKDOWN SPECTROSCOPY; Q-SWITCHED NDYAG; METHANE DECOMPOSITION; ATMOSPHERIC-PRESSURE; ELECTRON-DENSITY; DEHYDROGENATION; HYDROGEN; DISSOCIATION; TEMPERATURE; CATALYSTS
It is shown that the propane molecules are strongly decomposed in the metal assisted laser induced plasma based on the nano-catalytic adsorption. A Q-Switched Nd:YAG laser is employed to irradiate the propane gas filled in the control chamber in the presence of the reactive metals such as Ni, Fe, Pd, and Cu in order to study the effect of catalysts during the decomposition. The catalytic targets simultaneously facilitate the plasma formation and the decomposition events leading to generate a wide distribution of the light and heavy hydrocarbon molecules, mainly due to the recombination processes. Fourier transform infrared spectroscopy and gas chromatography instruments support the findings by detecting the synthetic components. Furthermore, the optical emission spectroscopy of the laser induced plasma emissions realizes the real time monitoring of the reactions taking place during each laser shot. The subsequent recombination events give rise to the generation of a variety of the hydrocarbon molecules. The dissociation rate, conversion ratio, selectivity, and yield as well as the performance factor arise mainly from the catalytic effects of the metal species. Moreover, the ablation rate of the targets of interest is taken into account as a measure of the catalytic reactivity due to the abundance of the metal species ablated from the target. This leads to assess the better performance factor for Pd among four metal catalysts of interest during propane decomposition. Finally, the molecules such as ethane and ethylene are identified as the stable abundant species created during the successive molecular recombination processes. Published by AIP Publishing.