BISMUTH TANTALATE CERAMICS; QUANTITATIVE-ANALYSIS; TRANSPARENT CERAMICS; OPTICAL-PROPERTIES; THIN-FILMS; MICROSTRUCTURE; FABRICATION; ABSORPTION
Strict control of composition is of paramount importance for the reproducible fabrication of advanced ceramics. In particular, the preparation of high-grade transparent ceramics of definite line-compounds requires that the ratio of major constitutive elements be quantified with a precision better than a fraction of a mole percent to prevent the precipitation of secondary phases and the scattering of light. Such a requirement poses difficult challenges to most analytical methods, especially when applied to nearly-stoichiometric insulating phases. In this work, we show that laser-induced breakdown spectroscopy (LIBS) is a well-suited technique for the assessment of non-stoichiometry in yttrium aluminum garnet (YAG) ceramics and that the aluminum to yttrium ratio can be determined with a resolution of 0.3 mol %, well within the phase boundaries of YAG. (C) 2017 Optical Society of America