Laser-induced breakdown spectroscopy (LIBS); laser ablation; stability; monitoring;NEUTRON-ACTIVATION ANALYSIS; SPECTROMETRY; SULFUR; LIBS; ENVIRONMENT; FLUORINE; AEROSOLS; CHLORINE; CONCRETE; COAL
Mastering the change of cement raw materials composition in real time has important significance to timely adjusting the proportion of raw materials and improving the quality of cement products. As a result, a greater need for online chemical sensors is evolving. Laser-induced breakdown spectroscopy (LIBS) possesses many of the characteristics required for such online chemical sensing, and is a promising technique for field measurements in harsh industrial environments. In this work, we developed a LIBS device for online cement raw materials quality monitoring in the way of ejecting gas-powder mixture, and enhanced the measurement stability through approaches including powder concentration of the ejected gas-powder stream stabilization, pulsed laser power stabilization, and optical efficiency enhancement.