Investigation of nonuniform surface properties of classically manufactured fused silica windows
Keywords
POLISHING-INDUCED CONTAMINATION; INDUCED DAMAGE THRESHOLD; X-RAY REFLECTION; REFRACTIVE-INDEX; ROUGHNESS; OPTICS; GLASS; MITIGATION; CRACKS; ELLIPSOMETRY
Abstract
We report on investigations of the spatial variations of contamination, roughness, and index of refraction of classically manufactured polished fused silica surfaces. Therefore, laser-induced breakdown spectroscopy was used to probe surface and subsurface impurities via the detection of aluminum. Measurements at different positions on the surface of the cylindrical fused silica windows evidenced an almost contamination-free center region, whereas a relatively large contamination area was found close to the edge. In-depth measurements verify the presence of aluminum atoms in the bulk until a depth of several tens of microns for the edge region. In addition, atomic force microscopic measurements show that the surface roughness is larger in the center region compared to the edge. Further, the index of refraction increases from the center region towards the edge as measured via ellipsometry. The results indicate a nonuniform impact of the grinding, lapping, and polishing tools on the surface. The findings turn out to be of specific interest for different applications, particularly for the realization of large-scale high-performance coatings. (C) 2017 Optical Society of America