Fan, Z. W. ; Li, X. ; Lian, F. Q. ; Lin, W. R. ; Liu, Y. ; Mo, Z. Q. ; Nie, S. Z. ; Wang, P. ; Xiao, H. ; Zhang, H. B. ; Zhong, Q. X.
LIBS instrument design; Liquid steel analysis; On-line process monitoring; Vacuum alloys production; Laser-induced breakdownspectroscopy;LIBS; STEEL
Laser-induced breakdown spectroscopy (LIBS) utilizing an echelle spectrograph-ICCD system is employed for online analysis of elements concentration in a vacuum induction melting workshop. Active temperature stabilization of echelle spectrometer is implemented specially for industrial environment applications. The measurement precision is further improved by monitoring laser parameters, such as pulse energy, spatial and temporal profiles, in real time, and post-selecting laser pulses with specific pulse energies. Experimental results show that major components of nickel-based alloys are stable, and can be well detected. By using internal standard method, calibration curves for chromium and aluminum are obtained for quantitative determination, with determination coefficient (relative standard deviation) to be 0.9559 (<22%) and 0.9723 (<2.8%), respectively. (C) 2017 Elsevier B.V. All rights reserved.